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. bstract

A delta w-ing at a high angle of attack produces two vortices that generali ujidt g-

dramatic increases in core size, followed by the formation of regions of reversed flow. Ths

5 phenomenon is called vortex breakdown and can have significant effects on the aircraft's

lift. drag. and moment coefficients. The objective of this thesis is to provide a baeline

model of the compressible vortex, independent of the complex body interaction with the

delta wing. Tb ime_-6dVeis th'en used to simulate vortex breakdown for various vortex

3 strengths, Reynolds numbers, and Mach numbers with particular attention given to the

effects of compressibility.

3 After running many simulations it was found that Mach number has a favorable effect

by delaying vortex breakdown as defined above. Holding Reynolds number and vortex

3strength constant while increasing Mach number reduced the effective vortex strength

while compressing the flow. Another important result of this compressible flow study was

the disappearance of non-unique solutions at Re = 200 and V = 1.0 as Mach number was

increased. No paths of non-unique solutions were found for M > 0.2.
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5 NUMERICAL SIMULATION OF COMPRESSIBLE VORTICES

I. Introduction

I Vortex breakdown is a phenomenon that occurs in rotational flows with a concen-

trated core of vorticity within a primarily irrotationa flow. Swirling flows in pipes and

leading-edge vortices over delta wings are examples of this flow. The term -vortex break-3 down" is defined by Beran (2) as rotational flow with the development of a stagnation

point on the core of a vortex, followed by a region of reversed flow and a dramatic increase

3 in core size.

Vortex breakdown of the leading edge vortices over a delta wing can have significant

3 effects on the aircraft's lift, drag, and moment coefficients. For this reason breakdown has

been studied by many aerodynamicists since it was first discovered in 1957 by Peckham5 and Atkinson (33). A brief historical background and an outline of the study is contained

in this chapter.I
1.1 Historical Background

I In the past thirty-two years since the discovery of vortex breakdown, there have

been many experimental, analytical, and numerical investigations of the vortex breakdown

problem. Several review papers have been written on the subject, most notably the reports

by Hall (17), Leibovich (26), Leibovich (28). and Hall (14). After Peckham and Atkinson'sIdiscovery. Elle (5) and Lambourne and Bryer (25) conducted further experimental inves-

tigations of leading-edge vortices. Useful information was presented in these studies but

quantitative results were difficult to obtain because of the sensitivity of the vortex core to

probe disturbances.

Qualitative results were obtained by visualization, which led them to the discovery

5 of two distinct types of vortex breakdown. In Hall's review (17), Figure 2 reproduces the

picture taken by Lambourne and Bryer of vortex breakdown in the leading-edge vortices

I
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over a delta wing. Flow visualization was made possible by injecting dye into the fluid at

the wing apex. With this technique they discovered "bubble vortex breakdown" which is

characterized by the near axisymnietric swelling of the core into the shape of a bubble.

3 followed by turbulent disintegration of the vortex. The other type of breakdown found

was "helical vortex breakdown" which can be described as an abrupt transformation of

5 the linear core into a helical filament. Helical vortex breakdown occurs after several turns

of the helical core.

I The discovery of bubble vortex breakdown led several investigators to conduct swirling

pipe flow experiments. The pipes were made of Plexiglass to permit flow visualization.

IThe vortex strength and Reynolds number associated with the flow could be controlled

in this apparatus bN moving swirl vanes at the inflow and changing the mass flow rate

respectively. This type of experiment was conducted by Harvey (18), Kirkpatrick (22),

Sarpkaya (35), Sarpkaya (36), Sarpkaya (37), Faler and Leibovich (6), Garg (8), and Faler

and Leibovich (7). Quantitative data was obtained by the last three through the use of

laser doppler anemometry. By constraining the flow entering the test section to rotational

symmetry, Faler and Leibovich (6) were able to classify seven distinct types of breakdown

with five of them containing a stagnation point on the core, satisfying the earlier definition

of vortex breakdown. The bubble type of breakdown was classified type 0, whereas the

helical form was clissified a type 2 breakdown.

The bubble form of breakdown was the most attractive type to simulate numerically

3due to its axisymmetric nature. It could be modeled in 2-D with a square computational

grid. saving on computer resources. Kopecky and Torence (23) were the first to model

5 vortex breakdown with the Navier-Stokes equations. Since 1973, results have been reported

by Grabowski (11), Krause et al. (24), Nakamura et al. (31), Nakamura et al. (32), Hafez

et al. (12), Beran (1), Hafez et al. (13), Brown and Lopez (3), Lopez (29), and Menne (30).

Nakamura used the vortex filament method which allowed him to generalize the flow from

I rotational symmetry. The other papers assumed rotational symmetry in the model of

the vortex breakdown. The papers by Brown and Lopez (3) and Lopez (29) compared

5 computational results with experimental flow visualizations and found excellent agreement.

All of these simulations have been accomplished using the assumption of incompressibility.

1
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A compressible study of the vortex breakdown is a logical next step and is the subject of

5the present work.

1 1.2 Problem Statfmcn

There are three main objectives of this study. The first is to extend the analysis

3 of vortex breakdown into the regime of compressible flow, and to determine the trends

of increasing Mach number. Since delta wing aircraft will certainly be operating in the

3compressible flow regime, a compressible study of the vortex breakdown, independent of

the complex delta wing body interaction, is needed. This objective will be accomplished

Iby obtaining a solution at a low freestream Mach number. M , with a particular set of

Reynolds number. Rc , and vortex strength, V , for which incompressible flow data is

I available and the vortex breakdown phenomenon occurs. A comparison is made with this

data to validate the code, then calculations are made to obtain new solutions at increasing

IMach number for the same values of Re and 1'.

3 The second objective is to investigate the effects of compressibility on the occurrence

of non-unique solutions found by Beran (1). This objective will be accomplished by using

3 Euler Newton pseudo-arclength continuation to map out the solution path as a function

of vortex strength. This algorithm was developed by Keller (20) and is described in detail

5 in Chapter III.

The third objective is to perform a grid sensitivity study. This objective is very

3 important to investigators doing 3-D delta wing simulations. It will give these investigators

information on the grid necessary to capture the vortex breakdown phenomenon accurately.I
1.3 Study Contributions

I This was a successful investigation because it outlined the effects of compressibility

on axisymmetric vortex breakdown, not previously found in a body independent study.

After running many simulations, it was found that Mach number has a favorable effect

by destroying the vortex breakdown phenomenon. Holding Reynolds number and vor-

tex strength constant, while increasing Mach number, eliminated vortex breakdown, while

I 1-3I
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compressing the fluid. Another important result of this compressible flow study was the3 disappearance of non-unique solutions as Mach number was increased. Non-unique solu-

tions were reported in a previous incompressible flow study by Beran (1) at Rc = 200 and

3 iV = 1.0. No paths of non-unique solutions were found in the compressible flow regime

(M > 0.3).
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11. Mathematical Model

In this study of the vortex breakdown, it was necessary to use the full Navier-Stoke,

(S) model to capture the compressible. viscous nature of the trailing vortex. The model

assumes subsonic, compressible flow-, and thus it is not necessary to keep the convective

3 terms in conservative form. The NS model consists of five equations and five unknowns:

continuity, radial momentum, swirl momentum, axial momentum, and the energy equation.

3 The equation of state was used to convert all other variables into the five unknowns:

density. p . radial velocity, u , swirl velocity, v , axial velocity, w , and internal energy. e

2.1 Model Assumptions

There were various assumptions used in the derivation of the NS model. Steady-state3 solutions were the object of this study and so terms were set to zero. To simplify the

equation of state, the perfect gas assumption was used with constant specific heat ratio3 ", = 1.4. This assumption is not a restrictive one because vor,,x breakdown has been

observed experimentally at subsonic speeds. This argument al, -sumption

3 of Stoke's hypothesis, which is also good for subsonic speeds.

The temperature-viscosity relationship was derived by a linearization of Sutherland's

5 formula:
_C! T312

1 (T) = C2 + ' (2.1)

I where for air at moderate temperatures C2 = 110.4*K and C, need not be specified due to

non-dimensionalization. First Sutherland's law was non-dimensionalized by p(To), where

T(, is the temperature in the freestream:

3 . I(T) C1 T3 /2 (C2 + To) (T )3/2 (C2/To + 1) (2.2)
J(To) (C2 + T) C, T3/2 T O (C2 /To + T/To)

I Now, let T = T/TO and C; = C2/To, to obtain the non-dimensional Sutherland's formula:

u .(T) = (T) 3 /2 ( C+ (2.3)

2-1I
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The solution algorithm requires that all variables appear in the numerator of the3 algebraic equations resulting from discretization of the NS model. For this reason. a

linearization of equation 2.3 is obtained to ensure that T appears only in the numerator.3 A first order Taylor series expansion was used in the linearization process:

"(T A AT + O(AT')', (2.4)dT" In,"

where
dT = (C; + 1) +  ) - (T)3/2 (2.5)

d- (C2- +T-) 2 12 T)

I but Tj= T = I and -AT'= P- Tj = T'- 1, so

5 d To; 2 c; +I J (2.6)

3 which gives the non-dimensional linearized viscosity- temperature relationship:

3 '(T) = 3 +I (T- 1) + 1. (2.7)

A plot of equations 2.3 and 2.7 is given in Figure 2.1 to show the validity of this assumption.

An analysis of the maximum difference in the linear ;s relationship and Sutherland's tt

relationship was accomplished. At M = 0.4 the maximum error was 0.33% and at M = 0.8

a maximum error of 2.0% was found.

The non-dimensional thermal conductivity-temperature relationship is derived from

the Prandtl number relationship:

3 r (2.8)

where cp and Pr are assumed constant for this study. Non-dimensionalization of p and

3 k by uo and ko gives

Pr - Pk o (2.9)

but 5 also equals Pr so

Pr =-Pr, (2.10)k"

I
1 2-2

I



I

i 2.00

1.50 -

S1.00

0.50

Sutherland's Formula
0Linearized Formula

0.00 0.50 1.00 1.50 2.00

3 T

Figure 2.1. Non-dimensional Sutherland's Formula, To = 298°A"

3 giving k' = W.

3 Axisymmetry is also an assimption used in the governing equations. In experimental

work two kinds of vortex breakdown have been observed: bubble vortex breakdown, and

helical vortex breakdown. The bubble form is nearly axisymmetric. whereas the helical

form is a fully 3-D phenomenon. In the interest of geometric simplicity, the bubble form3 is the subject of this thesis. The governing equations are cast in cylindrical form and theni

all partial derivatives with respect to 8 are set to zero.

3 The last main assumption is laminar flow. No attempt was made at modeling turbu-

lence. since this would add complications to an already complex flowfield. Vortex break-

down has been observed in laminar3 flow by previous investigators. In all numerical simu-

lations Reynolds number was kept at 200, which is assumed to be in the laminar regime.

I
I
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2.2 Got'ening Equations

In this section the non-dimensional, governing equations are presented. The derva.

tjon of these equations is accomplished using the assumptions from the previous sect,):,3 and can be found in Appendix A. The non-dimensionalized lengths were scaled by t t-

radius of the vortex core at the inflow boundary. 8O , and velocities were scaled by the3 freestream velocity, 14' . Variables with subscripts r or z denote partial derivatives with

respect to the independent variables. Following is a list of the five equations solved nu-

Imerically.

Continuity:

C (pu) + .+ (pu') = 0 2.11r

u Momentum:

puu, - -- + pwu, + (-I - 1)(pe), =

I r

~cle,(4/3u, - 2/3- - 2/3w,) + cle,(u, + w,) (2.12
Re

+(cle + c2 )(4/3u?, + 4/3- " - 4/3 + u,, + 1/3u
7 F

3 v Momentum:

i puv
Puv, + - + PWVz

1 v
1[Cl,(v, - -) + Cle 2(t ) (2.13;

+(c~e + c2)(v, + - - - + V:.)
r" r

2

1 u- Momentum:

3 puu', + pu'w + (h - 1)(pE), =

-- [ce,(w, + u,) + cle , (-2/3u, - 2/3- + 4/3w) (2.14)

1 +(cle + c2 )( l/3u,, + 1/3- - + w, + - + 4/3u-,))r r

I
I
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Energy:

IP'r 3 .
"[-P + (pu,), + (pu'e),] + [U, t u*2, + ,u.2] + [,,2,.+ v,'+ U. 3]I P[( 3  r ru,2 tsu 2

• U3), + ( U2 ) + (+ (
2
), + ( 

2
W ) : + (w 3  ) +  + + - + =

1 U2  V 2
I-[ce,(4/3uu, - 2/3- - 2/3uw, + vv, - - + u, + u'U',)

Rer r

+ ciez(uu2 + uw, + vv, - 2/3uw - 2 / 3 -w + 4/3ww2 ) (2.15)
r

+ (cle + C2)(4/3r + 4/3uu,, - 4/3uw, + 1/3uw,, + 1/3u,,w + vr

+ ur, - + U2 + 2t.r+ U + + uuI + V + VVz.

u'  u 2  v 2  u'Wur1/3U-~-U- 4/3- + 4/3w + 4/3rw,, - 2/3- - + - )r r r r r

3L (Cle + C2 )(C,, + (. + -)+ ce +C ]

where Re - W M = Pr = c.,, and c and c2 are the constants obtained in

linearization of Sutherland's formula and conversion of T" to e:

cl = [3/2 -c+1 (I - 1)M 2  (2.16)

I and

c2 = 1- 3/2 - +] (2.17)

Equations 2.11- 2.15 are then converted to a set of non-linear algebraic equations by
I means of second-order accurate central difference operators, and utilizing a constant grid

spacing in both directions:3 = 1+1 - UI(2. S)
2Az

I 62 u,+l - 2u, + u,_1
(Az)2  (2.19)

On the boundaries, second-order one-sided derivatives were used:

b, U = 3u, - 4u,_1 + U,- 2  (2.20)
I2Ax

Since an approximation of the location of the outflow boundary is used, a second-order

I
2-5I
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I3, r

I Figure 2.2. Swirl velocity typical of trailing vortices.Beran (2)

accurate difference at I - 1 can be specified:

6u -u - us-] (2.21)

3 An example of the discretization process is given in Appendix B by applying these operators

to the continuity equation. Once the governing equations are discretized the boundary

conditions need to be specified to complete the set.

5~2.3 Boundary Conditions

The flow was assumed to be generated by a delta wing at a high angle of attack. The3 resulting trailing vortex is assumed to produce a swirl velocity profile downstream of the

body approximated by Figure 2.2. This profile can be stated mathematically as

{ Vr(2 - r:2 ) r < I

U ~{ ;V = V/r (2.22)

V becomes a free parameter of the model and is referred to as the vortex strength. When

VI" = 1. the swirl velocity at the edge of the vortex core is equal to the freestream velocity

It'. The inflow boundary uses this swirl velocity profile, uniform axial velocity equal to

2
2-6I



I
I

* w

I ~ ~~Surface / ,

I Downstream /

Surface/

I

Figure 2.3. Characterization of the flow, Beran (2)

W. and radial velocity assumed to be zero. The physical domain is depicted in Figure 2.3

I and the computational domain in Figure 2.4.

3 The radial boundary is assumed to be far enough away from the vortex axis for the

axial velocity to return to freestream conditions. Also, swirl velocity is specified to be5 V/R and the radial velocity is specified in such a way as to satisfy continuity on the radial

boundary. The outflow boundary is assumed to be far enough downstream for -2 = 0 for

3 all of the dependent variables. The last boundary is the axis of symmetry and has velocity

compouents u and v equal to zero. with a symmetry condition imposed on w = 0).

5 The conditions on p and e have not been described up to this point because different

conditions were used in two phases of the investigation. In the first phase, the energy3 equation is replaced with p = 1 to simulate an incompressible flow. This causes e to

become a pressure term by the non-dimensional equation of state p-- (I - 1)pe. So the

3 boundary conditions on c become pressure boundary conditions. On the inflow boundary.

S1. f is determined by satisfying the u momentum equation on the boundary. On the radial

I
I
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,r=R S2

I S1 R 53

-4 Z ZI
U Figure 2.4. Geometry of the computational domain. Beran (2)

boundary' S2, e = 0 which gives p=O (freestream pressure). Outflow boundary S3 has the

condition = 0. The symmetry condition 2 = 0 is imposed on the axial boundary S4.

3 In the second phase, compressible flow, without the constant density assumption.

was modeled. The compressible, columnar-flow equations were solved to determine an

3 approximate density profile. Internal energy is not specified explicitly, instead the condition

= 0 is used to enforce a peak at the inflow. On the S2 boundary, p = 1 is again specified,

U and a Dirichlet condition on e is derived from the equation of state with T' = 1:

II f = -1(-1 - I1)M ,* (2.23)

The S3 and S4 boundaries are treated in the same manner as in the first phase of the

study.

I
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Table 2.1. Phase 2 Boundary Conditions

I Boundary S1 Boundary S2 Boundary S3 Boundary S4
P= PO P = 1  Pz = 0  P, 0
u = 0 (pu),+ ? =0 u, = 0 U= 0

v ,r(2- r ) r < 1 v = V/R v2 = 0 = 0
v=V/r r>l

u= 1 W= W W, =0 tr =0
u., = 0 e=.(_)Me =0 e, 0

I
These boundary conditions were developed through trial and error and a more in-

I formative discussion on boundary conditions can be found in Section 5.1. This section is

intended only to present the boundary conditions used in the study. A summary of the

I boundary conditions used in phase 2 are in Table 2.1.

2
I
I
I
I
I
I
I
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Ill. Solution Algorithm

i One of the objectives of this study is to be able to determine if non-unique solutiuo,1

of the flow equations exist. To compute non-unique solutions, a verN robust algorithnm .s

needed to obtain both stable and unstable, steady-state solutions. Newton's method j,

capable of computing non-unique solutions for the set of non-linear, algebraic equations

resulting from a discretization of equations 2.11- 2.15.

Newton's method is guaranteed to converge if the initial guess is within its ball of

convergence (19). The difficulty is finding an initial guess within the ball. At higher values

of Reynolds number and vortex strength, the ball of convergence can contract making it

more and more difficult to find a suitable initial guess. To overcome this problem pseudo-U arclength continuation is used in combination with Newton's method. Pseudo-arclength

continuation, like other continuation methods, uses information at the current solution to

calculate a solution at a parameter value close by. This chapter is dedicated to describing

these two methods.U
3. 1 Newton's Method

Newton's method is an iterative algorithm that solves the nonlinear system of equa-

tions

t (; A) = 0. (3.1)

Given x', an initial approximation to the solution vector X, and A the free parameter. an

improved approximation x'"1 can be found by solving the system of equations:

I L_(i';A) (Z'+ - -') = -F(I';A). (3.2!

I The solution to equation 3.2 is known as a Newton iterate. Successive Newton iterates are

computed until the norm of f goes to zero, usually defined as machine precision or some

I other tolerably small value. The norm used is defined as:

SI£11= (3.3)

I 3-1
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I is the Jacobian matrix, which is defined as:

An example calculation of some of the elements of equation 3.4 is shown in Appendix B.

Newton's method is an attractive algorithm because of its ease of programming and it -

3 convergence rate. The method is guaranteed to converge quadratically if the Jacobian ma-

trix is non-singular and the initial guess is within the ball of convergence (19). No singular3 matrices were encountered during any of the runs and pseudo-arclength continuation was

used to find a suitable initial guess.I
3.2 Pseudo-arclngth Continuation

3 It has been proven that if a solution j" is known and 4 is nonsingular, then for

some range of A about A" there exists a unique solution path through (1_, A'). The proof

is outlined in (21). Pseudo-arclength continuation (PAC) is Keller's method of computing

solutions along the solution path by using information at (!',A-) to compute the next

3 solution point.

Figure 3.1 is representative of a solution path found by plotting the norm of the

solution vector versus the free parameter A. The PAC process is to compute a tangent

vector T at the known solution x_, designated as P. Then, at a distance d away, search

along a line perpendicular to T for the next solution point. This is done by first using

arclength to parameterize the solution path (L = z(s), A = A(s). and F = F(s) = 0).

Then the tangent vector is computed by

3 ds
Id z(s;())= 0. (3.5)

3 Using the chain rule equation 3.5 becomes

3 F (s)._(s) + Ex(s)A(s) = 0, (3.6)

I
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(3.7)

where

I a

ands

dA
4~s) -(S). (3.8)

I The definition of arclength is

II (s) II2 +P(s) = 1. (3.9)

Equations 3.6 and 3.9 can then be solved as a system for the tangent vector:

It (s) 
(3.10)

providing the Jacobian matrix is not singular. Now define 0 such that

I LP I £ _ (S) ( .
(3.11 1

I
I 
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I Then equations 3.6 and 3.9 give the following relationships

I A~s) = 1I (3.12)

5 and
z(s) = -A(s)_0. (3.13)

m The sign of equation 3.12 represents the direction of the tangent vector and is therefore

indeterminate. At the startup of the continuation process this sign is set depending on

which part of the solution path is to be computed.

3 From the solution P, the tangent vector T, and the distance d, the initial solution

vector Qo can be computed:

- = + d(3 .14 )

Qo P P

The solution Q lies on a line perpendicular to T passing through Qo. This condition can

i be stated mathematically as

3 D - zP(;4 - Lp) + (AQ - Ap)Ap = d (3.15)

3 mand can be added to the system of nonlinear equations 3.1. This new system is then solved

by Newton's method with Q0 as the initial guess. Qo becomes a better and better first

approximation as d gets smaller. The solution j is obtained when F = 0 and D = d.

Another solution can be computed by repeating the process.

I For the vortex breakdown problem, the most informative graphical representation of

the solution path is found by plotting the free parameter Rf, V, or M against the weighted

m L2 norm of the change in r(,,,, from the inflow Foo):

Er (ArAz> Fr(,i,) - O , (3.16)

1 where r(j,,) = rv,,j. E[ is referred to as the "circulation perturbation" norm.
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I'. Nat'ier-Stokes Solutions

i In Chapter II. a model for compressible trailing vortices was de~eloped utilizing th,,

Navier Stokes equations. After discretization. the equations became a set of non-linear

algebraic equations. Using the method of solution described in Chapter 111. solutions to

the system of equations at Rc = 200 for various vortex strengths and Mach numbers ,ere

computed and are presented in this chapter, as well as the solution paths computed by

continuation in 1 and M. A grid sensitivity study and validation of the code with previous

work are also presented.

I 4.1 Grad Sensitiity Study

3 In numerical studies, it becomes very important to show the degree to which the

finite difference solution is independent of the grid used. Also. when using the far field as a

boundary, the effect of computational domain size on the solution should also be analyzed.

This section consists of a grid refinement and domain size study.

3 Both the studies were completed by computing solutions at Re = 200, V = 1.0, and

M = 0.15, since reversed flow occurs at this set of parameters. In the grid refinement

study the maximum radial and axial distances were held constant at R = 2 and Z = 20

while the number of nodes was varied. Radial grid refinement was analyzed by holding

3 the nodes in the : direction constant at I = 105 and varying the number of nodes in the

r direction J. depicted in Figure 4.1. At approximately J = 27. the solution becomes

3 practically independent of increasing J. Next. z grid refinement was studied by varying

I vhile holding J = 27. depicted in Figure 4.2. The solution points are coincidental for

I I = 157 and I = 209. The I = 105 solution produces very slight differences from the other

two solutions.

In the domain size study the node spacing Ar = R and A. = Z were kept

approximately constant with R and Z varied. The study of radial domain size was difficult

to obtain, because as J is increased by one the bandwidth of the system increases by 10

making the J = 40 case a computational limit for the available resources. Figure 4.3 shows

the comparison and although only two solutions are shown (R = 2 and R = 3), there is

I 4-1
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Figure 4.2. Effect of axial-node spacing on centerline axial velocity
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Figure 4.3. Effect of radial domain length on centerline axial velocity

I only a slight difference between them. The R = 2 solution has a slightly higher peak value

followed by a slightly lower minimum. The axial length study was more definitive and is

shown in Figure 4.4. At Z = 20 and I = 105, the solution becomes independent of axial

domain length. In summary, the solution becomes practically independent of domain size

and node spacing at R = 3, J = 40, Z = 20, and I = 157. This would be the grid to

choose if unlimited computer resources were available, but this was not the case for this

study. Instead, the standard grid used throughout the study is R = 2, = 27, 2 = 20. and

I = 105. This grid is a very good compromise and has only slight quantitative differences.

I 4.2 Comparison of Solutions for Low Mach Number

Steady-state axisymmetric, trailing vortices modeled with the Navier Stokes equa-

tions were studied previously by Grabowski (11), Hafez et al. (12), Beran (1), Hafez et3 a]. (13), and Beran (2). Although each study modeled trailing vortices in essentially the
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Figure 4.4. Effect of axial domain length on centerline axial velocity

I same way, there were significant differences in the form of the governing equations, the

finite difference expressions used, and the method of solution.

Grabowski cast the governing equations in primitive variable form, similar to this

I work, but he used a non-uniform grid with refinement near the axis of symmetry. The

equations were integrated in time until convergence, utilizing the artificial compressibilit

method of Chorin (4). Hafez et al. (12) took a different approach. He used the stream

function. vorticity. and circulation form, approximating derivatives with upwind difference,

at constant node spacing. An iterative relaxation technique was used to solve the set of

equations. Beran (1), Hafez et al. (13). and Beran (2) also used the stream functioll.

vorticity, and circulation form with constant node spacing, but the method of solving the

equations essentially follows Chapter III of this work.

All of these studies were performed with the assumption of M = 0, whereas M = 0.15

in the current study. This Mach number was the lowest attainable due to numerical

difficulties. This proved to be a very small portion of the difference as seen through
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comparison with the phase 1, M = 0 code. The qualitative and quantitative behavior will

now be compared for Re = 200 and V = 1. These conditions were chosen because vortex

3 breakdown does occur and data is available from other studies for these conditions.

Figure 4.5 shows the comparison of these data sets. Solutions are in good agreement

until - = 2.5. For 2.5 < z < 6 all five curves are in what is termed as phase, with variationis

in peak value. Most notably Hafez et al. (13) has a much lower minimum value than the

others. Beran (2) and Grabowski (11) are slightly lower in peak value. For r > 6 hw

present work, Grabowski (11), and Hafez et al. (13) show excellent agreement. Beran (2)

returns to a lower value of axial velocity. Quantitatively the M = 0.15 and R = 3 solution

and Grabowski (11) are in very good agreement, this is not surprising since Grabowski also

cast his equations in primitive variable form, whereas Beran and Hafez used the stream

function, vorticity, and circulation formulation. Qualitatively the current study and the3 three previous studies all show the same damped oscillatory behavior with a match in

I
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Figure 4.6. Continuation in Mach number. Re = 200 and V = 1.0

phase. With this kind of agreement, the code developed in this study may be accepted as

a viable tool to study the effects of compressibility.

54.3 Flow Solutions at Various Mach Numbers

In this section solutions at varying Mach numbers are examined. A continuation in

3.Mach number was performed over the range 0.2 < M < 1.0 with Re = 200 and V = 1.0.

In all of these runs the standard grid I = 105, Z = 20, J = 27. and R = 2 was used.

Figure 4.6 presents Er versus tf for the continuation run. As one can see from this figure.

the behavior is very regular as Mach number is varied. No limit points were encountered3 and the sign of the determinant of the Jacobian matrix was constant for the complete run

suggesting no change in stability.

ITo analyze the effect of increasing Mach number, axial profiles of U, and p on the

centerline are presented in Figures 4.7 and 4.8. In the w profiles, one can see that as Mach

number increases reversed flow is quickly lost and the breakdown is lost entirely at about

I
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Figure 4.9. v profiles on the centerline for various Mach numbers. Re = 200 and V = 1.0

I M = 0.5. Thus, by increasing Mach number, breakdown is effectively delayed for V held

I constant.

To explain this trend a look at the relevant terms in the radial momentum equation

3 proves fruitful. Beran (2) found that with the assumption of a quasi-cylindrical flow, the

relevant terms in the incompressible flow radial momentum equation are

I t, -

-2 :Z -- . (4.1 p
r 8 r

I Similarly for compressible flow, the radial momentum equation becomes

I#t'2  L- (4.2!
r ar'

3 The assumption of quasi-cylindrical flow is not a perfect assumption but certainly retains

the largest terms of the radial momentum equation and becomes more applicable as M

gets larger, as can be observed in Figure 4.7. Integrating equation 4.2 with respect to r

I
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across the domain obtains the relationshipI
PX - Po R 2dr, (4.3)I r

but Px is equal to zero if R is large enough. So, equation 4.3 becomes

Po - dr. (4.4)

I To obtain the axial pressure gradient on the centerline, take the partial derivative of

equation 4.4 with respect to z, obtaining

1 1 + j 1( d. (4.5,,

Beran (2) found that for z between the inflow and the axial position of minimum axial

: I velocity, an adverse pressure gradient caused a stagnation of the flow. The terms 1, v 2,

and 2pv are positive definite, so the terms , and become the terms that can cause

3 a favorable pressure gradient or an adverse pressure gradient for a compressible flow.

Figure 4.9 shows the axial profiles of v at R = 1 and for M = 0.2 and 0.4. Both the3 M = 0.2 and 0.4 profiles have a negative y, with its magnitude getting smaller as M

is increased. The second part of equation 4.5 then provides an adverse pressure gradient3 whose magnitude gets smaller as M is increased. The axial density profiles in figure 4.8

provide information on the first term in equation 4.5. The term is positive and gets

I larger as M is increased. This again decays the adverse pressure gradient by providing a

negative contribution. In summary. as M is increased the adverse pressure gradient, by

3 which the axial velocity on the centerline is stagnated, is reduced.

It is also interesting to note that as M is increased at regular intervals the density

profiles change in like manner. This relationship explains the near linear behavior of

Figure 4.6. A solution was obtained at M = 1.0 without difficulty. even though the

non-conservative form of the equations was used. No spikes in the velocity profiles were

observed. The flow solution is composed of weak shock waves. The assumption of a linear

I
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Figure 4.10. Continuation in V for Re = 200 and M = 0.2

viscosity temperature relationship produces a maximum error of 5.0% at this Mach number

3however.

~4.4 V Continuation at Various Mach Numbers

One of the important discoveries of Beran (2) was the existence of non-unique solu-3tions for a range of vortex strengths and Re = 200. One of the objectives of this work is to

see what happens to the non-unique solutions as Mach number is increased. An important

first step is to reproduce the non-unique behavior as M - 0.

Figure 4.10 shows a continuation run at M = 0.2, Re = 200, and 0.5 < V < 3.0. The3non-unique behavior does indeed exist at this low Mach number. A change in sign of the

Jacobian matrix determinant was found at the limit point, which generally is associatedIwith a change in stability. At V = 0.9, the continuation process broke down. This was

probably due to a second limit point with too large a value of d to resolve. In an attemptUto fill in this curve the M = 0.4 and V = 1.5 solution was used to obtain an M = 0.2

I
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and V = 1.5 solution through continuation in M. This solution was then used to begin

3 a continuation run down from V = 1.5. Another limit point was found near the previous

one at V = 1.0589. The sign of the determinant changed through the second limit point.

I The curves were not able to be connected because of the breakdown of the continuation

process. Continuation runs were then made for M = 0.4 and M = 0.6. These curves

3 are shown in Figures 4.11 and 4.12. Non-unique solutions were not evident in these run.

and no change in sign of the determinant was found. Both solution paths were taken to

3 extremely high vortex strengths to ensure the absence of non-unique solutions.

Figure 4.13 is a composite plot of the three continuation runs in the region of non-3 unique solutions. The three solutions are practically coincidental up to a vortex strength

of approximately 0.75. At V = 0.75 the three curves separate. The M = 0.2 path makes3 an abrupt slope change and then runs a parallel course with the other two solution paths

until V = 1.0587. At V = 1.0587 a limit point is encountered. The Ml = 0.4 solution3 exhibits some of the slope change at V = 0.75 as well, but not as abrupt a change for

I
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Figure 4.14. w profiles on the centerline for various V's at Re = 200 and M = 0.8

I AM = 0.2. The M = 0.6 curve makes an even smaller slope change and then runs a parallel

Icourse to theM = 0.4 path.

Figures 4.14 and 4.15 show the centerline axial velocity and density profiles of four

3 increasing vortex strengths at M = 0.8. These solutions are presented to show the effects

of increasing V at a high Mach number. As V was increased the minimum value of w

3 moves towards the inflow boundary until a certain value of V is reached. For Al = 0.,

this value is between 1.0 and 1.2. At this point increasing V compresses the fluid on the

3 centerline with slight increases in the minimum u,. This increase in minimum u- was due

to an enforcement of conservation of mass as density becomes lower at this axial position.

3 There was no reverse flow observed for this Mach number.

I
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1'. Conclusions and RecommendationsI
This chapter discusses the results presented in Chapter 4 and the difficulties encoull-

I tered in finding the proper boundary conditions. A summary of the effects of compressibil-

it on the vortex breakdown and a presentation of recommendations for follow on study

5 Iare given.

3 5.1 Solution Stnsitivity to Boundary Conditions

Determining the boundary conditions for the compressible vortex was not a trivial

task. Unlike rnan fluid dynamics problems, the inflow conditions are at a station where

flow conditions are not necessarily known. The conditions on u. v. and w were taken from

Beran's incompressible study (2). Conditions that specify the inflow densit) and inter-

nal energy profiles become very difficult to obtain. The first set of conditions tried were

columnar flow conditions, p, = w, = e, = 0. Since the typical solution to the incompress-

ible flow equations is damped oscillatory motion, specification of a locally columnar flow

should have set the conditions at the peak of one of the flow oscillations. The result of

these conditions was immediate divergence even at very low values of V. This suggests an

overconstraint in the conditions.

3 To alleviate this problem, the conditions on p and e were changed. A density profile

was obtained by solving the columnar flow equations and used as a Dirichlet condition

on p. Then the u momentum equation was evaluated on the inflow boundary with ax-

ial derivatives approximated by first-order difference operators. This was necessary since

second-order operators would increase the bandwidth by 5, which was unacceptable compu-

tationally. These conditions worked for lower values of V, but at V = 0.8, large-amplitude

3 numerical noise appeared at the inflow boundary and grew worse as V was increased.

Satisfying the u momentum equation at the inflow boundary as the condition on p, and

satisfying the t momentum equation as the condition on -, was also tried with similar

results.

3 It seemed as though the lack of information on e was causing the difficulty. so the

next set of conditions tried were conditions on p, u, v, and w alone, allowing e to beI
5-1I



I
I

set by the governing equations. Specifically, these conditions were p = PO obtained from

5 the columnar flow equations, u = 0, v set by Figure 2.2, w = 1. and w, = 0. These

conditions worked well for Re = 200 and the range of V's physically attainable and ere

3the conditions used throughout this work. The iterative solution process diverges for higher

Reynolds numbers due to the boundary conditions though, hence the reason Re = 200 was

5 used throughout the study. A more robust set of conditions need to be determined. Either

experimental p and e profiles, or an extension of the quasi-cylindrical equations found in

3 Beran (2) to compressible flow should be utilized. In the absence of vortex breakdown, the

quasi-cylindrical equations approximate trailing vortices at high Reynolds numbers very

3 well. For this reason, they should provide a good set of initial conditions for p or e.

1 5.2 Compressibility Trends

There were some very interesting trends observed in this compressibility study. Com-

pressibility has a favorable effect, from the viewpoint of an aerodynamicist, on vortex break-

down. This can be observed in Section 4.3; as Mach number was increased, breakdown

was quickly lost. This was probably due to compression of the fluid reducing the adverse

5 pressure gradient on the centerline, destroying the the vortex breakdown phenomenon.

In Section 4.4, the effect of varying vortex strength for a constant Re and M was

3 analyzed. When flow solutions at M = 0.8 were computed, reversed flow was not observed,

even for extremely large values of V.

Beran's incompressible study (2) showed the occurrence of non-unique solutions for

increasing V at Re = 200, and at realistic vortex strengths. As Mach number was increased.

5 these non-unique solutions disappeared. This is desirable because multiple solutions cause

problems with time-integration schemes, since the observed steady state solution becomes

3 dependent on the initial flow state.

In summary, as Mach number was increased for Re = 200 and V = 1.0, breakdown

was lost at about M = 0.5. As vortex strength was increased for M = 0.8, the minimum

value of w moved towards the inflow boundary, as was reported by Beran (2). In Beran's

incompressible study (2) as V was increased other local minima were observed. In the

3
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compressible study, when V grew large enough the minimum w stopped moving toward

5 the inflow, but instead of producing more local minima as in incompressible flow, the fluid

becomes more compressed.

5.3 Recommendations for Follow-on Study

During the course of this study original goals of mapping out the solution space for

3 various values of Re, V, and M had to be reduced to accomplishing a compressibility study

at low Reynolds number for various vortex strengths. This was due to time constraints and

3 the difficulties encountered with the boundary conditions. One can see that a logical follow-

on study would be Io derive a set of robust boundary conditions that can accommodate

5 larger Reynolds numbers, as well as various Mach numbers and vortex strengths. This

follow-on study would benefit time integration studies as well, since time-integration codes

3 may converge on a solution even if the wrong set of boundary conditions are used. The

compressible quasi-cylindrical equations mentioned previously are a promising starting

5 point.

Once these boundary conditions are determined, simulations at higher Reynolds num-

5 bers should be run to determine whether non-unique solutions can be found. Also, flow

structures should be studied to determine if the same trends are found for high Reynolds

3 numbers as was found for Re = 200.

Finally, a compressible time-integration code should be developed to determine the

stability of the different branches in the continuation curves. With the current study and

the follow on topics providing the compressible flow information on vortex breakdown, one

would hope that future investigators would be able to put the experimental, analytical.

and numerical studies together to form a better understanding of the vortex breakdown

problem.

I
I
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Appendix A. Derivation of the Governing Equations

The derivation of the governing equations was performed by utilizing the nondineli-

Slona] general curvilinear coordinate Navier Stokes equations found in reference (34). The

general continuity equation is:

49p 1 0 Lh (1 3P (.
-+ ,-h~3 i -hhh~~= AI

where the j subscript denotes summation. Cylindrical coordinates were used in the model.

In cylindrical coordinates z = r. z 2 = 0, and z 3 = z with velocity components u. equal

to u, v, and w. The metrics hi are as follows: h, = 1, h2 = r, and h3 = 1. Equation A.I3 becomes:

+ 1 a (rpu) + a (pv) + 9 (rpw) =0 (A.2)

m Two of the main assumptions of this thesis are V = 0 (steady state) and - = 0 (ax-

isymmetric). With these assumptions applied to Equation A.2 the cylindrical axisymmetric

continuity equation becomes:

U O49r O
-(pu) + - + (pw) = 0 (A.3)

5 The general curvilinear coordinate momentum equation in the Z direction can be

i written:

a a _i 1 Oh1 I+
-( +hh 2h3 Ox, j h1 ' 2 -kd2 - " x22O - 1 )I_1 ( Oh Oh3+h 3 "0 (A. 4

with the other two momentum equations following by cyclic permutation and where F,,3 are the components of the tensor Y :

ye) = put u + )AI - -- , (A.5)

I
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rij is the stress tensor and is defined:

U 2
rj = -- ( . V)6,, + 2p(defV), (A.6;

and 6,, is the Kronecker delta.

h 7h2 h3 8zt (hih 2 h3 uI (A.7)

IdefIh u 2 8h+ u3 8h(A

3with (defV)2 2 and (def V) 33 following by cyclic permutation.

(defV),,(,,,= 8 h h +ui'f j (A.9,

I Now using the specific coordinates and metrics defined in the derivation of the continuity

equation above and remembering 2 = 0 these definitions become:

V V = (~ru) + (v) + (rw) =Ur + U+ 1D3 (A.l1)

(defV)1 I = u, (A11)

3 (def V)2 2 = U (A.12)
r

I (defV)3. = w. (A.13)

(dcfV) 3 1 = 19 + =-u) (u.. + u,) (AA4,

I 11 = -A (Ur + + + 2pu, (A.16)
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After making the assumption of steady state and axisymmetry Equation A.4 becomes:

I0 19-- ( lr 1) + -- ( ,F31)- - , =0o A.

3 using the relationships A.10- A.17 the relevant T terms become:

I I = p u u + p - 3 U, + r +W.) +2u,] (A.19)

I 1 31 = puw - -L (U. + W,)] (A.20

I F 2 2 = pt + p - -, u - + )t: -t 2P] A.2]

3 Substituting these terms into A.18 the u momentum equation becomes:

a [ 1 2 +[ 1 2 4t 2 )]

I PV4 + 3 k 3  t--)-A

puur - 2 + PWUZ + Pr

1e,,4/u 2/3U 2/3w,) + pu,(u, + w,) (A .22)

+p(4/3u,, + 4/3u" - 4/3 + u., + 1/3wr,)]I
In Section 2.1 the equation of state was given to relate p. p. and e:

p = - 1p (A.23)

I The linearized viscosity-temperature relationship was also given to relate and e:

I p = cie + C2 (A.24)

3 where c, and c2 are defined by Equations 2.16 and 2.17. Substituting these relationships

I
A-3
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into A.23 the u momentum equation is obtained:

puu - - + pu': + (-(pe)=r

[cic(4/3u. - 2/ - - 2/3u,2 ) - cje,( u + ,,.) (A.2 5

+(ce + c2 )(4/3u. + 4 / 3 Ur - 4 / 3k u u., + 1/3u',,)]3 r P2

The v momentum equation found by cyclic permutation and the application of pre-

I viously mentioned assumptions is:

3 10 F21
r)7(r - 1

2 ) + -- (r 3 2 ) + - = 0 (A.26)
r ar rz r

3 For the t' momentum equation more of the (defV),j and r,, terms must be defined:

I (defl') 12 = (defV)l 1 = V - V) (A.27)

II 2 r
(defV) 32 = -(V) (A.28)

512 = r2l = V'- (A.29)

r32 = p(v.) (A.30)

Using A.27- A.30 the relevant F,, terms become:1 , [0( t".- ]
F 12 = 21 = PUV - [ r- (A.31)

-32 = pt'U- R e (v:)] (A.32)

3 Substituting these terms into A.26 the equation becomes:

Pv - 1 (4 VA - )]+[PUV Re(A.-P)]
3~ e3 r rR r
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Subtracting continuity and combining terms:

Put'r + put,*r
+p(Vr + -t: 

(A.33
r

P V rr - 1 +  t,,.,)]

Using Equation A.24 the t momentum equation becomes:

puvr + put,+ w.

-PtS. + - ) + ( (A.34)

I +(clf + c2)(V', + ! r- + v.)]

The w momentum equation found by cyclic permutation and the application of pre-

Iviously mentioned assumptions is:

1 ~ 1 18z(.rs)0(.5

r--(rF13 ) + - -(r --) = 0 (A35)

For the u' momentum equation more of the (defV' ) ,j and r,, terms must be defined:

(defV) 13 = 1 (W, + u,) (A.36)

I 3 r13 =i(Wr + U.) (A.37)

T33 = P( - - 3 r + 3) (A.38)

Using A.36- A.38 the relevant I,, terms become:

Y 3 3=P WW+Pu -+ (A.40)

I 1-

I
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Substituting these terms into A.35 the equation becomes:

ar pw ,+. + 1puw- i± 1

I+ a- 2iP + 4Piw2 )] 0

Subtracting continuity and combining terms:

3 PUWr + PWWz + ps =

- l,(u, + u.) + p:(-2/3u,. - 2/3! + 4/3u',) (A.41)

I +p(1/3u,.. + 1/3u " + u.,., + ' + 4/3u,,)]
r r

3 Using Equation A.24 the w momentum equation becomes:

3 puw, + pww. + (- - 1)(pe). =

Icle,(w,+u,) + cie,(-2/3u, - 2/3 + 4/3w,) (A.42)

+(cle + c2)(1/3u,, + 1/3 z + w,,. + - + 4/3u?,,)]
f r

I The non-dimensional general curvilinear coordinate energy equation can be written:

-h(pE) + 1 h h I 'h 2h3 (pE + P)u -e RePrh O-k1 j = 0 (A.43)

3 where E = e + l(u 2 + v2 + w2). Now applying the above assumptions and metrics A.43

becomes:

a"' [puC + (pu3 +put 2 p uu ) +pu - 1(r11 ur12 V r13u') (A.44,

ar 2Re -Re Pr ar IA(3O[ 1 ", k 

+ 49 Pew+ 1(pu2w + pv2w + pw 3 ) + pw -- ( 31u + 732V + r33 ) RePr z =0

3 The stress tensor terms in Equation A.45 have all been defined above. Applying these

terms and using A.23 A.45 becomes:

A
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I-+ (Pue)7 + (pwe),) + LIU' + ov 2 + uwIj JU W + v W + W3 ]r 2 '2

+ [(3 +(U2), (VU,) + U,3 3  UV2  Uw,2
2 r+ (Ut' 2 ), u, (~) v + ( + (u'3 ) + -+ + -I 2 v 2

Re [CI~r(4/3uu, - 2/3- 2/3uuw2 + t't', - r + u~uw + utrw 7 )

+ lu,+Ur+vv, 2/3u,.w - 2/3~-- + 4/3wu,,) (A .45)

+ (CIE + C2 )(4/3ur2 + 4/3UU7 7r - 4/3u7 w2. + 1/3utL7 2. + 1/3Ur7 2 w + Vr2

+~ Lv-r + 2u~w,. + Wr+ Wjyur + UZ + uu, + v + 2,

3+ 1/3 zi - 4/3- + 4/3w2 + 4/3uw', - 2/3- - -+ -

+ 2  ( 7  e r + 27jr [PIE + 7)(rr+e, cler Ci])
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Appendix B. Derivation of Representative Analytic Jacobian Elements

The purpose of this appendix is to set up Newton's method for a representative

equation. The process of going from a differential equation to an algebraic equation and

then computing the associated analytic Jacobian elements is described in detail.

I Due to its simplicity the continuity equation will be used to demonstrate the process.

The differential form of the continuity equation is:

I
(PU), + L + (PW), = 0 (B.1)

The first step is to put the equation in non-conservative form:

pru + pu, + pu + pw + pw, = 0 (B.2)r

In the discretization process all partial derivatives in the interior equations are replaced3~with discrete operators. In a 2-D implicit scheme with J nodes in the r direction, I nodes

in the z direction, and J < I a column by column numbering system produces the smallest3 bandwidth of the banded system to be solved. The stencil used is found in Figure B-1.

With this stencil, the second order central difference operator is:

I 62U = UkI - Uk3 (B.3)
2Az

I Applying the 6,. and 6, operators to each of the terms in Equation B.2 it becomes:

Pk-~. rk k+P Uk2 - Uk4 + PkUk +rPk - P k+Pk fUk I- Wk 0(B4

L2Ar J Uk +Pk [ J + rk I 2A J [I =0 2A:(B

3 This is the non-linear algebraic continuity equation to be solved by Newton's method and

will be referred to as F.

I The next step is to compute the analytic Jacobian elements of B.4. This is done by

taking partial derivatives of B.4 with respect to each variable at each node. The Jacobian

I
I B-i
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I k3 k ki Ar

* k4

Az

I
Figure B.1. Stencil used for discretization of the Continuity equation

I elements associated with p are:

OF _= k2 - + J + 4 tkI - Wk3] (B.5)

aP& 2Ar rk 2Az

* OF 1
=Pk2 2Ar (B.6)

OF I

aP - 2(B)

aF I - k (B.9)
OPk3 2Az

the elements associated with u are:

SOF =_ Pk2 Pk4] +k

+ +- (B.IO)
auk 2r rk

l B-2*
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I OF = 1

Ou*2 = ar p  (B. 11)

U OF I
'uk--- 

= - 2A p k B.2

I and the elements associated with ' are:

=OF 1 (B.13)

Iwkl - 2Az( 3

IOF 1
8F_-- = --- k (B. 14)

This process is repeated for the momentum equations and the energy equation. and then

Newton's method is used to solve:

SB= -E15)

I where 4 is the Jacobian matrix.

I
I
I
I
I
I
I
I

I
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UNCLASSIFIED m

I
A delta wing at a high angle of attack produces two vortices that generally undergo

dramatic increases in core size, followed by the formation of regions of reversed flow. This

phenomenon is called vortex breakdown and can have significant effects on the aircraft's

lift, drag, and moment coefficients. The objective of this thesis is to provide a baseline

model of the compressible vortex, independent of the complex body interaction with the

delta wing. The model is then used to simulate vortex breakdown for various vortex

strengths, Reynolds numbers, and Mach numbers with particular attention given to the

effects of compressibility.

After running many simulations it was found that Mach number has a favorable effect m

by delaying vortex breakdown as defined above. Holding Reynolds number and vortex

strength constant while increasing Mach number reduced the effective vortex strength i
while compressing the flow. Another important result of this compressible flow study was

the disappearance of non-unique solutions at Re = 200 and V = 1.0 as Mach number was

increased. No paths of non.unique solutions were found for M > 0.2.
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